
Advanced Type Features

Jeffrey Maddalon1

j.m.maddalon@nasa.gov

NASA

PVS Class, 2012

1Largely based on earlier talks by Rick Butler and Hanne Gottliebsen
Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 1 / 30

Outline

1 Uninterpreted Functions

2 Dependent Types

3 Parameterized Types

4 Partial Functions

5 Judgements

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 2 / 30



Uninterpreted Functions
In PVS, functions can be defined without a “body.” These functions are
called uninterpreted.

floor(a: real): int

abs: [int -> nat]

which_quadrant(x: real, y: real): {i: nat | i >= 1 AND i <= 4}

When would you use an uninterpreted function?

Different implementations (e.g. sorting)

The precise function is unknown, but its general characteristics are
known

The function represents unknown information (e.g. time of user input)

Types are important!

Only type information can be used in a proof

Should restrict the types as much as possible. A poor type choice is
abs:[int -> int]

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 3 / 30

Dependent Types

Dependent types are types that depend on other values

real_stack: TYPE = [# size: nat,

elements: [{n: nat | n < size} -> real]

#]

mod(m: nat, d: posnat): {r: nat | r < d}

In this lecture...

We will explore how the prover can take advantage of dependent types

We will use the floor ceil theory from the prelude as a running
example

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 4 / 30



Functional Attempt to define floor

First try, an interpreted function

x: VAR real

floor(x): int = x - fractional(x)

Ugh, now we have to define another function

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 5 / 30

Axiomatic attempt to define floor

x: VAR real

floor(x): int

floor_def: AXIOM floor(x) <= x & x < floor(x) + 1

This fully defines the key property of a floor function, but

Must ensure that our axioms are consistent
I Why are inconsistent axioms bad?
I Warning: it is easy to miss problems here!

Must explicitly bring in the properties of floor through the floor def

axiom

But on the plus side, we don’t have to prove axioms

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 6 / 30



Prelude Theory floor ceil
x: VAR real

i: VAR integer

floor(x): {i | i <= x & x < i + 1}

The return type of floor depends upon the argument x

The main property of floor is contained in the return type

The return type is so constrained that it only has one element (and
we can prove this in PVS)

Thus, without providing a body, we have completely defined this
function

By putting type info in, the decision procedures can use this
information in the proofs automatically.

I Which command invokes the decision procedures?

ceiling is defined in a similar manner:
ceiling(x): {i | x <= i & i < x + 1}

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 7 / 30

Proving Key Properties

The assert command tries to prove a result automatically using the type
information.

floor_def: LEMMA floor(x) <= x & x < floor(x) + 1

Proof of floor def:
|-------

{1} (FORALL (x: real): floor(x) <= x & x < floor(x) + 1)

Rule? (skosimp*)

|-------

{1} floor(x!1) <= x!1 & x!1 < floor(x!1) + 1

Rule? (assert)

|-------

{1} floor(x!1) <= x!1 & x!1 < 1 + floor(x!1)

Rule? (assert)

Simplifying, rewriting, and recording with decision

Q.E.D.

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 8 / 30



Observations on the Proof

The following properties of floor are proved with (skosimp*) (assert):
floor_ceiling_reflect1: LEMMA floor(-x) = -ceiling(x)

floor_int : LEMMA floor(i) = i

ceiling_int : LEMMA ceiling(i) = i

floor_ceiling_int : LEMMA floor(i)=ceiling(i)

floor_split : LEMMA i = floor(i/2)+ceiling(i/2)

floor_within_1 : LEMMA x - floor(x) < 1

ceiling_within_1 : LEMMA ceiling(x) - x < 1

Sometimes a typepred floor(...) will be needed. This usually becomes
necessary when nonlinear arithmetic is present in the sequent

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 9 / 30

Existence TCCs

PVS requires us to demonstrate that the return type is non-empty

% Existence TCC generated ... for floor(x): {i | i<=x & x<i+1}
floor_TCC1: OBLIGATION

(EXISTS (x1:[x:real -> {i: integer | i<=x & x<1+i}]): TRUE);

The proof relies on supplying a value that satisfies the type:
(inst + "lambda x: choose({i: integer | i<=x & x<1+i})")

Then, to show this set is non-empty, we rely on the following properties of
the reals located in the prelude:

lub_int: LEMMA

upper_bound?((LAMBDA i, j: i <= j))(i, I)

=> EXISTS (j:(I)): least_upper_bound?((LAMBDA i,j:i<=j))(j,I)

axiom_of_archimedes: LEMMA EXISTS i: x < i

We will spare you the details, though you can get the proof by issuing M-x

edit-proof in the prelude.pvs buffer (M-x vpf)

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 10 / 30



Motivation for Parameterized Types

Sometimes dependent types are not enough. Let’s say we want a bounded
array of an arbitrary size:

real_array: TYPE = [below(N) -> real]

PVS does not know what N is. Even if we add a variable declaration for N
the problem persists:

N: VAR posint

real_array: TYPE = [below(N) -> real]

Note, constant types are defined as expected

real_array_ten: TYPE = [below(10) -> real]

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 11 / 30

Parameterized Types

There are two ways to use use N in a type declaration:

By adding N as a theory parameter
arrays [N: posint] : THEORY

real_array: TYPE = [below(N) -> real]

By adding N as a type parameter
arrays : THEORY

N: VAR posint

real_array(N): TYPE = [below(N) -> real]

What is the difference?

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 12 / 30



Scope!

Theory parameter N is known throughout the theory; there is only one N.
Information about N is implicit.

arrays [N: posint] : THEORY

real_array: TYPE = [below(N) -> real]

A: VAR real_array

P: pred[real_array]

lem: LEMMA FORALL A: P(A)

Type parameter N is not fixed within the theory. We can not declare a
global variable A as above, but we must qualify A and P fully
in each lemma:

arrays : THEORY

N: VAR posint

real_array(N): TYPE = [below(N) -> real]

lem: LEMMA FORALL (A:below_array(N)),

(P:pred[below_array(N)]): P(A)

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 13 / 30

Using Total Functions For Partial Specification

In PVS, all functions are total, so the domains should be suitably
restricted. For example:

div(x: real, y: {nz: real | nz /= 0}): real

Partial specification is useful. How can we emulate it?
x,y,z: VAR real

unspecified(x,y,z): real

faulty: VAR bool

component(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE x*x + y*y + z*z

ENDIF

The uninterpreted function unspecified returns a value

But, we do not know anything about that value (except its type)

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 14 / 30



Equal Unspecifieds

If we are not careful, we can prove things we don’t mean
component1(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE x*x + y*y + z*z

ENDIF

component2(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE 4*x + 4*y + 4*z

ENDIF

We probably didn’t mean to say that if component1 and component2 are
both faulty then they produce the same value. That is, we can prove:

faulty1 & faulty2 =>

component1(x,y,z,faulty1) = component2(x,y,z,faulty2)

Solve this with two unspecified functions: unspecified1 and unspecified2

But what about a distributed system where the same function is run
on multiple processors?

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 15 / 30

Another Method for Partial Specification

component_a(x,y,z,faulty): { w: real | NOT faulty =>

w = x*x + y*y + z*z}
component_b(x,y,z,faulty): { w: real | NOT faulty =>

w = x*x + y*y + z*z}

The dependent type mechanism is used to constrain the return type
of the function

But, only when faulty is FALSE

We cannot prove
component_a(x,y,z,faulty) = component_b(x,y,z,faulty)

Why?

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 16 / 30



Motivation for Judgements2

An example based on the NASA mod library:

i,k: VAR int

j: VAR nonzero_integer

m: VAR posnat

mod(i,j): {k | abs(k) < abs(j)} = i - j * floor(i/j)

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

mod pos says, if mod’s second argument is positive, then the returned value is

non-negative

smaller than the second argument

Let’s prove mod pos

2PVS only uses the spelling judgement, an alternate English spelling is judgment
Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 17 / 30

Proof of mod pos
|-------

{1} FORALL (i:integer, m:posnat): mod(i,m) >= 0 AND mod(i,m)<m

Rule? (skosimp*)

|-------

{1} mod(i!1, m!1) >= 0 AND mod(i!1, m!1) < m!1

Rule? (expand "mod")

|-------

{1} i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1

Rule? (typepred "floor(i!1 / m!1)")

{-1} floor(i!1 / m!1) <= i!1 / m!1

{-2} i!1 / m!1 < 1 + floor(i!1 / m!1)

|-------

[1] i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1

What’s the next step, any thoughts?

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 18 / 30



Proof of mod pos (cont’d)
{-1} floor(i!1 / m!1) <= i!1 / m!1

{-2} i!1 / m!1 < 1 + floor(i!1 / m!1)

|-------

[1] i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1

Rule? (grind-reals)

div_mult_pos_le2 rewrites floor(i!1 / m!1) <= i!1 / m!1

to floor(i!1 / m!1) * m!1 <= i!1

div_mult_pos_lt1 rewrites i!1 / m!1 < 1 + floor(i!1 / m!1)

to i!1 < floor(i!1 / m!1) * m!1 + m!1

div_mult_pos_le2 rewrites floor(i!1 / m!1) <= i!1 / m!1

to floor(i!1 / m!1) * m!1 <= i!1

div_mult_pos_lt1 rewrites i!1 / m!1 < 1 + floor(i!1 / m!1)

to i!1 < floor(i!1 / m!1) * m!1 + m!1

Applying GRIND-REALS,

Q.E.D.

A total of 4 proof steps.

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 19 / 30

Why Judgements?

i,k: VAR int

m: VAR posnat

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

Essentially, mod pos describes the type of mod whenever the second
parameter is positive.

Would be nice if this were known to prover

Might eliminate some nuisance TCCs

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 20 / 30



Judgements

A JUDGEMENT supplies type information to the typechecker beyond what
comes from the function definition.

For mod, if the domain of the function is restricted, then the return
type is restricted.

i,k: VAR int

m: VAR posnat

mod_below: JUDGEMENT mod(i,m) HAS_TYPE below(m)

Once we have the mod below judgement, we can prove the mod pos lemma in
only three steps:
(skosimp*) (assert) (assert)

And we didn’t have to explicitly bring in mod below

Or two steps if we bring in the judgement:
(skosimp*) (rewrite "mod below")

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 21 / 30

No Free Lunch

PVS will create a TCC that requires us to prove the judgement is correct.

% Judgement subtype TCC generated (at line ...) for mod(i,m)

% expected type below(m)

% unfinished

mod_below: OBLIGATION FORALL (i,m): mod(i,m)>=0 AND mod(i,m)<m;

This proof is very similar to the original proof of mod pos.

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 22 / 30



Unnamed Judgements

We may name judgements like we saw above, but PVS also allows
judgements to be unnamed as in

i,k: VAR int

j: VAR nonzero_integer

m: VAR posnat

mod(i,j): {k | abs(k) < abs(j)} = i - j * floor(i/j)

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

JUDGEMENT mod(i,m) HAS_TYPE below(m)

Cannot refer directly to an unnamed judgement

Prover commands still apply it

Proof of mod pos

(skosimp*) (assert) (assert)

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 23 / 30

Judgements for Types

In the previous slides we have seen how to use a judgement to show
that an expression has a certain type.

JUDGEMENT can also be used to show that a type is a subtype of another.
zero_to_five: TYPE = {i:int | i>=0 AND i<= 5}
zero_to_ten: TYPE = {i:int | i>=0 AND i<=10}

JUDGEMENT zero_to_five SUBTYPE_OF zero_to_ten

posreal_is_nzreal: JUDGEMENT posreal SUBTYPE_OF nzreal

equiv_is_reflexive: JUDGEMENT (equivalence?)

SUBTYPE_OF (reflexive?)

Appropriate TCCs will be generated for each judgement

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 24 / 30



Motivation for Recursive Judgements

Let’s say that we had a tail-recursive implementation of factorial.

factit(n,f:nat) : RECURSIVE nat =

IF n = 0

THEN f

ELSE factit(n-1,n*f)

ENDIF

MEASURE n

And let’s say that we wanted to prove that this definition is equal to the
existing definition.

IMPORTING reals@factorial

factit_factorial : LEMMA

FORALL(n:nat): factit(n,1) = factorial(n)

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 25 / 30

Proof of factit factorial
|-------

1 FORALL (n: nat): factit(n, 1) = factorial(n)

Rule? (induct "n")

Inducting on n on formula 1,

this yields 2 subgoals:

factit_factorial.1 :

|-------

{1} factit(0, 1) = factorial(0)

Rule? (expand* "factit" "factorial")

This completes the proof of factit_factorial.1.

factit_factorial.2 :

|-------

{1} FORALL j:

factit(j, 1) = factorial(j) IMPLIES

factit(j + 1, 1) = factorial(j + 1)

Rule? (skosimp*)

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 26 / 30



Proof of factit factorial
{-1} factit(j!1, 1) = factorial(j!1)

|-------

{1} factit(j!1 + 1, 1) = factorial(j!1 + 1)

Rule? (expand "factorial" 1)

[-1] factit(j!1, 1) = factorial(j!1)

|-------

{1} factit(1 + j!1, 1) = factorial(j!1) + factorial(j!1) * j!1

Rule? (expand "factit" 1)

[-1] factit(j!1, 1) = factorial(j!1)

|-------

{1} factit(j!1, 1 + j!1) = factorial(j!1) + factorial(j!1) * j!1

Rule? (replace -1 :dir RL :hide? T)

|-------

{1} factit(j!1, 1 + j!1) = factit(j!1, 1) + factit(j!1, 1) * j!1

What do we do now? What is the problem?

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 27 / 30

Key property of factit

The key property of factit for an arbitrary f is

factit_interm : LEMMA

FORALL(n:nat, f:nat): factit(n,f) = f*factit(n, 1)

which is easily proven by induction.

With this result, we can prove factit factorial
.

.

|-------

{1} factit(j!1, 1 + j!1) = factit(j!1, 1) + factit(j!1, 1) * j!1

Rule? (rewrite "factit_interm")

This completes the proof of factit_factorial.2.

Q.E.D.

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 28 / 30



Key property of factit

We can encorporate this property into a JUDGEMENT

factit_jud : JUDGEMENT

factit(n,f:nat) HAS_TYPE {m : nat | m = f*factorial(n)}

which is will generate an TCC obligation very similar to factit interm.

With this judgement, we can prove factit factorial
.

.

|-------

{1} factit(j!1, 1 + j!1) = factit(j!1, 1) + factit(j!1, 1) * j!1

Rule? (assert)

This completes the proof of factit_factorial.2.

Q.E.D.

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 29 / 30

Key property of factit

Another form of this JUDGEMENT is
factit_jud : RECURSIVE JUDGEMENT

factit(n,f:nat) HAS_TYPE {m : nat | m = f*factorial(n)}

Which is will generate two obligations:

factit_jud_TCC1: OBLIGATION

FORALL (f1, n1: nat, v: [[nat, nat] -> nat]):

(FORALL (n, f: nat): v(n, f) = f * factorial(n)) IMPLIES

n1 = 0 IMPLIES f1 = f1 * factorial(n1);

factit_jud_TCC2: OBLIGATION

FORALL (f1, n1: nat, v: [[nat, nat] -> nat]):

(FORALL (n, f: nat): v(n, f) = f * factorial(n)) IMPLIES

NOT n1 = 0 IMPLIES v(n1 - 1, n1 * f1) = f1 * factorial(n1);

Which are proven automatically!
The reason these proofs are much easier is that the type constraint is
recursively added to the TCCs.
Summary: If you have a recursive definition, consider using recursive
judgements.

Jeffrey Maddalon (NASA ) Advanced Type Features PVS Class, 2012 30 / 30


